人脸关键点检测的技术在很多领域上都有应用,首先是人脸识别,常见的人脸算法其实都会有一步,就是把人脸的图像进行对齐,而这个对齐就是通过关键点实现的,因此关于人脸关键点检测的论文也常叫face alignment,也就是人脸对齐。另一方面,对于美颜,2D/3D建模等等也需要一来人脸的关键点技术,而且通常也要求有尽可能多的人脸关键点。
Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. Dlib's open source licensing allows you to use it in any application, free of charge.
Dlib是一个包含了大量的机器学习和复杂软件开发工具的现代C++工具箱,被广泛的用于软件开发等领域。
本篇博客主要研究的就是Dlib中的人脸关键点检测的工具。该工具的方法依据是 One Millisecond Face Alignment with an Ensemble of Regression Trees by Vahid Kazemi and Josephine Sullivan, CVPR 2014 这篇论文,在速度和精度上均达到了极好的效果。 本文的侧重点在于人脸关键点模型的存储结构的分析和模型的压缩策略分析,最终在性能几乎不变的情况下,得到模型的至少10倍的压缩比。项目最终的github地址为:https://github.com/miaoerduo/dlib-face-landmark-compression 欢迎fork、star和pr。
Read More...